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Rectification efficiency of a Brownian motor

Daisuke Suzuki* and Toyonori Munakata†

Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
~Received 10 August 2002; revised manuscript received 22 November 2002; published 15 August 2003!

The energy balance of a Brownian motor is discussed based on a Langevin equation without the overdamped
approximation. Energetics of the system suggests that the frictional dissipation energy associated with the
unidirectional movement should be counted as a part of the useful energy for the rectification process of a
Brownian motor. This leads to a new definition of the efficiency, which is applicable, contrary to the conven-
tional one, even if the external load is absent. For the so-called flashing ratchet model, we numerically solve
the Langevin equation for various situations and discuss both the temperature and the friction strength depen-
dence of the rectification efficiency and the role of theduty ratio.
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I. INTRODUCTION

Recently there has been an increasing interest in the
called ‘‘ratchets’’ or Brownian motors. These systems con
of Brownian particles moving in asymmetric potentials a
are subject to a source of nonequilibrium such as exte
fluctuations or temperature gradients. As a consequenc
these two ingredients—asymmetric potentials a
nonequilibrium— a flow of particles can be induced.

Many kinds of models for ‘‘Brownian motors,’’ which do
not have direct contact with the chemical reactions, are
rived from Feynman’s ratchet and pawl system@1#, which
consists of a so-called ratchet, reminiscent of a circular s
with asymmetric saw teeth, and a pawl which admits the s
teeth to proceed without much effort into one directi
~henceforth called ‘‘forward’’! but practically exclude the ro
tation in the opposite~‘‘backward’’! direction. The ratchet is
connected by an axle with a windmill whose vanes are s
rounded by a gas at a finite temperatureT1. The ratchet and
pawl are kept at a different temperatureT2(,T1). The ran-
dom collisions of the surrounding gas molecules with
vanes will cause the ratchet to rotate in the forward directi
Such rectification of thermal noise could be utilized to p
form work such as lifting a load.

Many variations of the Brownian motors have been dev
oped @2–6#, one of which is the ‘‘flashing ratchet model,
which is mainly treated in this paper. In the flashing ratc
model, a Brownian particle moves in the potential which
asymmetric and periodic in space. The potential is switc
on and off in time and this is the origin of the name ‘‘flas
ing.’’ The time variation of the potential enables the syste
to absorb the energy from the external system and the
ticle can move in one direction using this energy.

The Brownian motor, which includes the flashing ratch
aims at the unidirectional movement of the particle in situ
tions where the scale of the system is so small that the t
mal noise cannot be ignored. Because of such an interes
aim, the models are paid attention to not only by research
of thermodynamics and statistical mechanics but also
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those who try to explain the principle of the movement
real motor proteins@7,8# and those who try to invent the
nanomachine@9,10#.

When one evaluates how effectively a system works,
ficiency is an important measure. For example, in a h
engine, efficiency is generally defined as the ratio of
work done by the engine to the input energy. In the case
Brownian motors, how is efficiency to be defined? So f
efficiency is generally defined as the ratio of the work do
by the particle against the load to the input energy@5–8#. In
other words, the efficiency above is the one of converting
input energy to the potential energy associated with the lo
In this way the load is inevitably included in the model
define the efficiency. In the flashing ratchet model, the tim
independent part of the gradient of the potential, which r
resents the load, has been incorporated to the system an
particle performs work such as ascending the potential g
dient. These considerations lead to the conclusion that
efficiency is zero when the load is zero.

We have some question on the assertion that the sys
without the load does not utilize the input energy at all.
course, the Brownian motor may be the system which
store part of the input energy as the potential. But origina
the aim of the Brownian motor is to move the particle in o
direction. Assume that we have two kinds of Brownian p
ticles, ‘‘A’’ and ‘‘ B’’ and both consume~or dissipate! the
same amount of input energy. The particleA kicks around
but on an average moves in one direction and reaches
destination within a given time. The particleB also kicks
around but does not achieve one directional movement
therefore cannot reach the destination within a given time
is obvious that the particleA more efficiently uses the inpu
energy than the particleB. But the conventional efficiency is
zero for both particles.

Motivated by this point, Derenyiet al. @11# proposed a
new efficiency which does not recourse to the load. That i
task is first specified, i.e., to translocate the motor ove
distanceL during a given timet, and the efficiency is de-
fined as the ratio of the minimum energy necessary for
task to the input energy. Although this approach is gene
and applicable to chemical as well as heat engines, we
another approach, i.e., energetics of the Langevin dynam
@12#, from which we are rather naturally led to a new de
©2003 The American Physical Society06-1
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nition of the efficiency, ‘‘rectification efficiency,’’ which has
some similarity to the one proposed in Ref.@11#.

In Sec. II, the Langevin equation, with the inertia effe
taken into account, for the Brownian motor is introduce
Employing a time average method, we formulate the ene
balance in the steady state. In Sec. III, a new ‘‘rectificat
efficiency’’ is introduced. In Sec. IV, the new efficiency
used to discuss the effects of temperature, friction, and
duty ratio on the directional movement of a ratchet. Here
duty ratio@13# denotes the ratio of the timeton during which
the asymmetric potential is on to the one cycle of the ti
variation of the potentialton1to f f . Finally in Sec. V, we
give some comments on the inertia effect and on the sig
cance of the duty ratio in our model.

II. ENERGY BALANCE

We treat a Brownian particle in the heat bath. The syst
is described by the Langevin equations

dp

dt
52jp1R~ t !2]xU~x,t !, ~1!

dx

dt
5

p

m
, ~2!

wherex denotes the position of the particle,p is the momen-
tum, m is the mass, andU(x,t) is an explicitly time-
dependent potential along which the particle moves. We
sume that the potential is expanded as

U~x,t !5U0~x,t !1Lx, ~3!

whereL is the load andU0(x,t) is periodic inx and t. The
forces on the particle from the heat bath are the friction fo
2jp and the random force which satisfies

^R~ t !&50,

^R~s!R~ t !&52mjkbTd~s2t !. ~4!

Instead of using thed-correlated ‘‘white noise’’R(t), we can
express Eqs.~1! and ~2! as

dp52jpdt1dW~ t !2]xU~x,t !dt, ~5!

dx5
p

m
dt, ~6!

where dW(t)[* t
t1dtR(t)dt denotes the increment of th

Wiener processW(t) in time dt, which satisfies

^dW~ t !&50,

^dW~ t !2&52mjkbTdt. ~7!

Now we discuss the energy balance based on Eqs.~5! and
~6!. For this purpose we first multiply Eq.~5! by p/m and
interpret the resulting Eq.~8! in the Stratonovich sense@14#,
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dp52j

p2

m
dt1

p

m
dW~ t !2]xU~x,t !

p

m
dt. ~8!

Since we consider the energy balance in the steady state
are not interested, in this paper, in the fluctuation from
average behavior, we take the long-time(t) average of Eq.
~8! as

1

tE0

tp~ t !

m
dp~ t !52

1

tE0

t

j
p2

m
dt1

1

tE0

t p

m
dW~ t !

2
1

tE0

t

]xU~x,t !
p

m
dt. ~9!

For infinitesimal time intervaldt, it holds that

1

mE
t

t1dt

p~ t !dp~ t ![
1

m Fp~ t !1p~ t1dt!

2 G@p~ t1dt!2p~ t !#

5
1

2m
@p~ t1dt!22p~ t !2#

5E
t

t1dt

dS p2

2mD . ~10!

Thus the left-hand side of Eq.~9! vanishes as

1

tE0

tp~ t !

m
dp~ t !5

1

tE0

t

dS p2

2mD
5

1

t

@p2~t!2p2~0!#

2m
→0 ~t→`!,

~11!

where we use the fact thatp(t)2 is bounded.
The first term on the right-hand side of Eq.~9! expresses

the power of the friction force. Puttingdp(t)[p(t)2 p̄ with
p̄[(1/t)*0

tp(t)dt, we have

1

t E0

t

j
p2

m
dt5

j

m
p̄25

j

m
~ p̄1dp!25

j

m
p̄21

j

m
dp2. ~12!

The second term on the right-hand side of Eq.~9!, related
to the work done by the random force, can be dealt w
similarly as Eq.~10!. That is, for the infinitesimal time inter
val dt,

E
t i

t i1dt

p~ t !dW~ t ![Fp~ t i !1p~ t i1dt!

2 GdW~ t i !

5Fp~ t i !1
dp~ t i !

2 GdW~ t i !

.p~ t i !dW~ t i !1
1

2
dW~ t i !

2, ~13!

where dW(t)[W(t1dt)2W(t),dp(t)[p(t1dt)2p(t),
and Eq.~5! is used. Therefore, we immediately see that
6-2
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1

tE0

t 1

m
p~ t !dW~ t !5jkbT. ~14!

The third term on the right-hand side of Eq.~9! is the rate
of work done by the external field. It is seen from Eqs.~3!
and ~6! that

1

tE0

t

]xU~x,t !
p

m
dt5

1

tE0

t

]xU0~x,t !dx1
1

tE0

t

L
p

m
dt

5
1

tE0

t

]xU0~x,t !dx1L
p̄

m
. ~15!

Substituting Eqs.~11!, ~12!, ~14!, and ~15! into Eq. ~9!, we
have the following equation of the energy balance in
steady state:

2
1

tE0

t

]xU0dx~ t !5
L

m
p̄1

j

m
p̄21jFdp2

m
2kbTG . ~16!

This equation is general and valid regardless of the de
of the model. To reveal the meaning of the energy bala
equation~16!, we study below numerically a typical mode
for the Brownian motor and obtain a concrete picture of
energy balance.

III. DERIVATION OF THE RECTIFICATION EFFICIENCY

In order to examine and interpret Eq.~16!, we take a
popular model for Brownian motor, that is, the so-call
‘‘Flashing Ratchet’’ model. In this model the potenti
U0(x,t) in Eq. ~3! takes the formU0(x,t)5Q(t)Up(x) with

Q~ t !5H 1, tP@0,ton!

0, tP@ ton ,ton1to f f!,

Up~x!5H A

axp
x, xP@0,axp!

2
A

~12a!xp
~x2xp!, xP@axp ,xp!,

where Q(t) and Up(x) are periodic with the periodton
1to f f andxp , respectively. In Fig. 1, the asymmetric pote
tial Up(x) is depicted, which flashes forton in one cycle. In
order to grasp the general features of the dynamical beha
of the system, we performed numerical calculations for va
ous values of the parameters which appear in the pote

FIG. 1. Profile of potentialUp(x). Up(x) is periodic, Up(x
1xp)5Up(x), and asymmetric.
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U0(x,t). We show the results for one typical case below
which a50.1,A56p,xp52p,L51, and ton5to f f5p/2.
We note that in all our simulations below,a,ton1to f f ,A,
andxp are set as above.

The trajectoriesx(t) andp(t) are calculated on the bas
of the Langevin equation@Eqs. ~1! and ~2!# for which we
choosej5T51.0. m and kb are set to 1.0 throughout thi
paper. Each trajectory is obtained for timet520 000 and this
is repeated 100 times. This trajectory information enables
to take average of each term of Eq.~16!. Numerically, we
obtained

2
1

tE0

t

]xU0dx~ t !50.95,

L

m
p̄50.10,

j

m
p̄250.01,

jFdp2

m
2kbTG5~1.8421.00!.

The left-hand side of Eq.~16!, which we denote asEin f lux ,
represents the influx of energy to the system~the Brownian
motor! due to the external field, which is consumed partly
the work against the load~the first term on the right-hand
side!, partly for the directional movement against the fri
tional force ~the second term on the right-hand side!, and
partly as the fluctuation dissipation~the third term on the
right-hand side!. At this point, we comment onEin f lux for
latter convenience. During the long-time periodt, the exter-
nal potential is onN times withN.t/@ ton1to f f#. Number-
ing these intervals byi and denoting the position and time o
both ends of thei th interval by (xi ,2 ,t i ,2) and (xi ,1 ,t i ,1),
we express Ein f lux as Ein f lux5(1/t)( i@U0(xi ,2 ,t i ,2)
2U0(xi ,1 ,t i ,1)#. What is found from our numerical exper
ments is that normally the Brownian motor goes down
slope of the potential energyU0(x,t) and gets energy suppl
from this. If one wants to lay more emphasis on the chem
aspects of the flashing ratchet, we use the expres
dU0(x,t)5]U0 /]xdx1]U0 /]tdt and from
(1/t)*0

tdU0(x,t)50 reinterpret the expression forEin f lux

above, resulting from the jump or discontinuous~in time!
events where the motor on average gets~chemical! energy.
The second and the third terms on the right-hand side of
~16! may be collectively treated as the dissipation ene
given to the reservoir. Actually if one starts from the ove
damped model@12,15# instead of the model described b
Eqs. ~1! and ~2!, the stochastic process (dx/dt) or p(t)
would not be well defined and we could not have divided
dissipation into the two components as was done in Eq.~16!.
This is one of the merits of our Langevin approach, whi
takes into account inertial effects and enables us to ext
the dissipation energy associated with the directional mo
ment even ifL50.
6-3
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Based on the arguments above, we are naturally led
new definition of~rectification! efficiency as

h r[F L

m
p̄1

j

m
p̄2G /U1tE0

t

]xU0dx~ t !U, ~17!

where both work against loadL and dissipation energy asso
ciated with the directional movement against the friction
force are regarded as meaningful from a ‘‘rectificatio
viewpoint. This efficiency lays more emphasis on how t
input energy is utilized for the directional movement than
how much energy is stored inside the total system. So
what similar efficiency toh r was recently proposed by Wan
and Oster, who introduced the so-calledStokesefficiency
@16,17# by

hStokes5
j

m
p̄2/@DF1DW#. ~18!

Here DF represents the chemical energy supplied to
Brownian motor, which is given in their theoretical fram
work externally as the boundary condition on the~chemical!
energy profile. If we consider the flashing of the potential
our model as the transition between the chemical states
may regardDF as Ein f lux . DW is the work done by the
external field on the Brownian motor. In this paper, we co
sider only the case in which the external field exerts~con-
stant in time! force against the movement of the motor, i.
(L/m) p̄.0. If (L/m) p̄,0 however, we would putDW5

2(L/m) p̄ and employ the same expression asStokessinceL
is not the load anymore. The difference betweenh r and
hStokes thus consists in the treatment of the load. We co
sider, as many others, that the work done against the exte
force and stored in the system should be in the numerato
the efficiency. With these preparations, we now investig
the rectification efficiency of the Brownian motor for th
flashing ratchet model in detail.

IV. APPLICATION OF THE RECTIFICATION EFFICIENCY

A. Efficiency versus temperature and friction

We now calculate the rectification efficiency in vario
cases. First, we consider the rectification efficiency and
average momentum or velocity as a function of tempera
T and the friction constantj. In Fig. 2, we show theT de-
pendence of the rectification efficiency and the average
mentum. We observe the peaks of the efficiency and the
erage momentum aroundT'1.0. This is due to the fact tha
thermal activation is impossible when the coupling with t
reservoir becomes too weak~low temperature!, and the sys-
tematic or directional motion is prohibited when the coupli
with the reservoir becomes too strong~high temperature!.
Friction constant dependence of the efficiency and the a
age momentum are also studied for a constant tempera
The result, which is not shown here, represents a typ
Kramers’ behavior, showing peaks as in Fig. 2. Whenj is
small we have a weak contact with the reservoir and ther
activation is not expected. On the other hand, too largj
02190
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makes the Brownian particle immobile. ForT51, we ob-
served the optimum friction,j'1.0 (L50).

B. Efficiency versus duty ratio

The duty ratio@13# is originally defined as the fraction o
the time that a motor spends attached to its filament, an
turned out to characterize the structural and functional pr
erties of the motor proteins. For the flashing ratchet mode
may be defined aston /@ ton1to f f# and we studied the duty
ratio dependence of the efficiency in view of the crucial ro
played by the duty ratio.

We investigated the rectification efficiency for the du
ratio. In Fig. 3 are plotted the duty ratio dependence of
energy influx2(1/t)*0

t]xU0dx(t), the dissipation related to

the unidirectional movement (j/m) p̄2, and the rectification
efficiencyh r , with the loadL set to zero andj51.0 andT
51.0. From Fig. 3, we note that the duty ratio~0.3! corre-
sponding to the maximumh r is different from the one~0.5!
corresponding to the maximum (j/m) p̄2. That is, if the main
purpose of this motor is a fast directional movement rega
less of its energy consumption, it is optimum for the ratio
be set to 0.5. In such a mode of the motion, the dissipa
due to fluctuations, the last term on the right-hand side of
~16!, becomes also large and the efficiency is not larg
there. On the other hand, if we want the motor to utilize t
input energy efficiently for the directional movement, th
duty ratio should be set to 0.3. In this case, the motor abso
less energy than in the case where the duty ratio is 0.5,

FIG. 2. The rectification efficiency and the average moment
as a function of temperature.j is set to 1.0 (L50).

FIG. 3. The rectification efficiency as a function of the du
ratio. j5T51.0.
6-4
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RECTIFICATION EFFICIENCY OF A BROWNIAN MOTOR PHYSICAL REVIEW E68, 021906 ~2003!
we can trace the origin of the high efficiency to the iner
effects by which the Brownian particle can keep on mov
even if the potential is switched off.

This observation can be slightly generalized as follow
Figure 3 tells us that we have generally two duty ratios c
responding to a given average velocity, one with a lar
duty ratio generally consumes more energy than the o
with less duty ratio. This may be interpreted that the mo
with the larger duty ratio is supplied with more energy th
is necessary to achieve a target velocity. However, if
expected role for the motor is the work against the load,
scenario is different as is discussed below.

C. Efficiency versus load

In Fig. 4, we plot the rectification efficiency as a functio
of the load for two kinds of motors, one with large duty rat
of 0.5 ~type M1) and the other with small duty ratio of 0.
~typeM2) (j5T51.0). The optimum load of the motorM1
is 0.4 with the efficiency 0.23, but the motorM2 has no
optimum load and the maximum efficiency of 0.27 is acco
plished whenL50. In other words, the motorM2 is more
efficient than the motorM1 in the low load region and vice
versa in the high load region. The above result illustrates
the difference of the duty ratio@13# makes the functiona
difference of motors, that is, load-pulling type (M1) and
swift motion type (M2).

V. CONCLUDING REMARKS

In this paper, we studied the dynamical properties o
Brownian motor based on a Langevin equation for a flash

FIG. 4. The rectification efficiency as a function of load. T
solid line is the motor of typeM1 whose duty ratio is 0.5, and th
other line is the motorM2 whose duty ratio is 0.3.
hy
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ratchet model. Inclusion of the inertia effects, which are u
ally neglected from the hydrodynamic considerations, ma
momentump(t) of a Brownian particle a well-defined pro
cess, and this has profound effects in discussing the en
balance. If we had started from an overdamped Lange
equation mj(dx/dt)5R(t)2]xU(x,t) and multiply dx,
which is no longer of orderdt, on both sides, we immedi
ately notice that both*dxR(t) andmj*dxdx(t)/dt diverge
@but the diverging part cancels to give finite value
*dx]xU(x,t)]. In other words, in order to extract the wor

against the frictional force (j/m) p̄2, appearing on the right-
hand side of Eq.~16!, it is necessary to start from the fu
Langevin equation~1!. Of course, if the overdamping cond
tion is applicable for a given problem, one can employ t
overdamped Langevin equation but still Eq.~17! should be

used for the efficiency. This is because (j/m) p̄2 represents
inevitable energy consumption for the particle to move
one direction against the frictional force, and this consum
tion is, so to speak, a meaningful dissipation. Similar resu
obtained by Derenyiet al. @11# in a slightly different context.
The difference between the efficiency in Ref.@11# and ours
consists in the treatment of the input energy~the denomina-
tor of the efficiency!. In Ref.@11#, for application to chemical
engines, adenosine triphosphate hydrolysis energy is ado
as the input. In this paper, on the other hand, from a sta
point of the thermodynamics, the net input energy suppl
to the system by the external field is adopted as the inpu

It is remarked that Eq.~17! may give an important infor-
mation on the motor proteins from an energetic viewpoi
Actually, in Sec. IV, we discussed two types of motors, i.
swift motion type (M2) and load-pulling type (M1) based
on the duty ratio@13#. It was shown there~see Fig. 4! that a
motor with small duty ratio (0.3) can moves swiftly with low
energy consumption for smallL, while a motor with large
duty ratio (0.5) can work optimally under the high load co
dition. Although our Langevin model represents an overs
plified picture for real motor proteins, it confirms the impo
tance of the duty ratio as the possible mechanism for
functional difference of motors.

Finally, we note that our energetic approach to the Lan
vin equation is general and it can be employed to vario
ratchet models, including the random-flashing ratchet and
rocking ratchet@5#. The Feynman ratchet@1# especially pre-
sents an interesting problem from the viewpoint of efficien
and we are currently engaged in this problem.
ro-

ev.

ys.
@1# R.P. Feynman, R.B. Leighton, and M. Sands,The Feynman
Lectures on Physics~Addison-Wesley, Reading, MA, 1966!,
Vol. 1, Chap. 46.

@2# R.D. Astumian, Science276, 917 ~1997!.
@3# P. Reimann, Phys. Rep.361, 57 ~2002!.
@4# P. Reimann, R. Bartussek, R. Haubler, and P. Hanggi, P

Lett. A 215, 26 ~1996!.
@5# H. Kamegawa, T. Hondou, and F. Takagi, Phys. Rev. Lett.80,
s.

5251 ~1998!.
@6# J.M.R. Parrondo, J.M. Blanco, F.J. Cao, and R. Brito, Eu

phys. Lett.43, 248 ~1998!.
@7# A. Parmeggiani, F. Julicher, A. Ajdari, and J. Prost, Phys. R

E 60, 2127~1999!.
@8# H.X. Zhou and Y.D. Chen, Phys. Rev. Lett.77, 194 ~1996!.
@9# M. Bier and R.D. Astumian, Phys. Rev. Lett.76, 4277~1996!.

@10# M. Schreier, P. Reimann, P. Hanggi, and E. Pollak, Europh
6-5



D. SUZUKI AND T. MUNAKATA PHYSICAL REVIEW E 68, 021906 ~2003!
Lett. 44, 416 ~1998!.
@11# I. Derenyi, M. Bier, and R.D. Astumian, Phys. Rev. Lett.83,

903 ~1999!.
@12# K. Sekimoto, J. Phys. Soc. Jpn.66, 1234~1997!.
@13# J. Howard, Nature~London! 389, 561 ~1997!.
@14# C.W. Gardiner,Handbook of Stochastic Methods~Springer,
02190
Berlin, 1983!.
@15# T. Munakata, A. Igarashi, and T. Shiotani, Phys. Rev. E57,

1403 ~1998!.
@16# H. Wang and G. Oster, Europhys. Lett.57, 134 ~2002!.
@17# H. Wang and G. Oster, Appl. Phys. A: Mater. Sci. Process.75,

315 ~2002!.
6-6


